## "ENGLISH ELECTRIC" COMBINED SLIDE RULE AND POWER FACTOR CALCULATOR

Examples and Calculations of Power Factor
Correction Problems

The ease and rapidity with which power factor calculations can be made by the use of the "English Electric" Combined Slide Rule and Power Factor Calculator are clearly shown in the examples which follow. This rule is complete within itself, no supplementary curves, charts or tables being required.

On the reverse side of the slide are engraved the special scales B<sub>1</sub> and C<sub>1</sub> for the solution of various power factor correction problems. Noting that the only reference points on the A and D scales are the unit lines at the extreme right of these scales, proceed as follows:

(1) To find the kVAR\* to raise a known power factor to a given value:

Set known power factor on scale B<sub>1</sub> at unit line on the A scale.

Set cursor to desired final power factor on B, scale.

Set zero line on C1 scale coincident with cursor line.

The reading on C<sub>1</sub> scale at unit line on D scale is the leading kVAR required expressed as a percentage of the existing kW load,

E.g.: existing power factor = .7 lag; required final power factor = .85 lag; leading kVAR required = 40% of existing kW load.

(2) With a known power factor (PF<sub>1</sub>) and kW load (kW<sub>1</sub>) to find the final power factor (PF) with an additional kW load (kW<sub>2</sub>) at unity power factor:

Set known power factor PF<sub>1</sub> on B<sub>1</sub> scale at unit line on the A scale and read C<sub>1</sub> scale at unit line on D scale.

Reduce reading so obtained in the ratio of existing kW load to final kW load,

 $i.e., \frac{kW_1}{kW_1 + kW_2}$ 

Reset slide with this value on the C<sub>1</sub> scale at the unit line of the D scale.

Final power factor PF is given on the B, scale at the unit line on A scale.

E.g.: Known kW load = 100 kW = kW<sub>i</sub> at ·64 power factor = PF<sub>i</sub>.

Added kW load = 60 kW = kW, at 1 0 power factor.

Total kW load =  $160 \text{ kW} = \text{kW}_1 + \text{kW}_2$ .

Reading on C1 scale is 120 for ·64 power factor.

Reducing this reading to

 $\frac{120\times100}{160}$ =75.

Reading on B<sub>1</sub> scale for 75 on C<sub>1</sub> scale is 8 and this is the final power factor of the total load.

(3) With a known power factor (PF<sub>1</sub>) and kW load (kW<sub>1</sub>) to find the final power factor (PF) with an additional kW load (kW<sub>2</sub>) at a known leading power factor (PF<sub>2</sub>):

Set known power factor PF<sub>1</sub> on B scale at unit line on the A scale and read C<sub>1</sub> scale at the unit line on D scale.

Reduce reading so obtained in the ratio of existing kW load to final kW load,

i.e.,  $\frac{kW_1}{kW_1 + kW_1}$ 

and let reading be, say, R1.

Set power factor PF<sub>1</sub> of added load kW<sub>2</sub> on B<sub>1</sub> scale at the unit line on the A scale and read C<sub>1</sub> scale at the unit line on D scale.

Reduce reading so obtained in the ratio of added kW load to final kW load,

i.e.,  $\frac{kW_1}{kW_1+kW_2}$ 

and let the reading be, say, Ra.

Set reading R<sub>1</sub> on the C<sub>1</sub> scale at unit line on the D scale and place cursor over the reading R<sub>2</sub> on the C<sub>1</sub> scale.

Bring the zero line on C, scale to cursor line and final load power factor PF is read on B, scale at unit line on the A scale,

E.g.: Known kW load = 100 kW = kW<sub>1</sub> at ·64 power factor = PF<sub>1</sub>.

Added kW load = 60 kW = kW<sub>2</sub> at 93 power factor load = PF<sub>2</sub>.

Total kW load =  $160 \text{ kW} = \text{kW}_1 + \text{kW}_2$ . Reading on  $C_1$  scale is 120 for '64 power factor.

Reducing this reading to

$$\frac{120 \times 100}{160} = 75 = R_1.$$

Reading on C<sub>1</sub> scale is 40 for 93 power factor.

Reducing this reading to

$$\frac{40\times60}{160}$$
=15=R<sub>2</sub>.

Hence final power factor is 855 lag.

(4) With a known power factor (PF<sub>1</sub>) and kW load (kW<sub>1</sub>) to find the power factor (PF<sub>2</sub>) of an additional kW load (kW<sub>2</sub>) to give a desired final power factor (PF):

Set known power factor PF<sub>1</sub> on B<sub>1</sub> scale at unit line on the A scale and read C<sub>1</sub> scale at the unit line on the D scale.

Reduce reading so obtained in the ratio of existing kW load to final kW load,

i.e., 
$$\frac{kW_1}{kW_1+kW_0}$$

and let reading be, say, R1.

Set desired final power factor (PF) on B, scale at unit line on A scale and read C, scale at unit line on the D scale and let this reading be, say, R.

Set reading R<sub>1</sub> on C<sub>1</sub> scale at unit line on the D scale.

Place cursor over reading R, on C, scale.

Bring zero line on C<sub>1</sub> scale to cursor line and read C<sub>4</sub> scale at unit line on D scale and let this reading be, say, R<sub>5</sub>.

Increase R, in the ratio of total load to added load.

$$i.e., \frac{kW_1 + kW_2}{kW_2}$$

and let this reading be, say, R.

Set reading R<sub>4</sub> on the C<sub>1</sub> scale at unit line on the D scale and read the power factor PF<sub>2</sub> of the added kW load kW<sub>2</sub> on the B<sub>1</sub> scale at the unit line on the A scale.

E.g.: Known kW load = 100 kW = kW, at -64 power factor = PF<sub>1</sub>.

Added kW load = 60 kW = kW, at unknown power factor = PF,

Total kW load = 160 kW = kW<sub>1</sub> + kW<sub>2</sub> at required final power factor of 97 = PF.

Reading on C, scale is 120 for 64 power factor.

Reducing this reading to

$$\frac{120 \times 100}{160} = 75 = R_1.$$

Reading R<sub>s</sub> on C<sub>1</sub> scale is 25 for 97 power factor. Reading R<sub>s</sub> is 50 on C<sub>1</sub> scale.

Increase R, to

$$\frac{50 \times 160}{60} = 133 = R_4$$

Power factor of added kW load kW<sub>a</sub> is 60 leading = PF<sub>a</sub>.

When dealing with multiple loads of different magnitudes and power factors, these should be resolved to a single equivalent load by the use of one or more of the methods given above.

The method of solution of power factor problems not covered by the above examples will readily suggest itself after familiarity and experience in the use of of this power factor slide rule.

## THE ENGLISH ELECTRIC COMPANY LTD.

MARCONI HOUSE, STRAND, LONDON, W.C.2.
Works: Stafford, Preston, Rugby, Bradford, Liverpool, Accrington.